
Global Search Algorithms for Minimum
Concave-Cost Network Flow Problems

G. M. GUISEWITE’ and P. M. PARDALOS’
‘HRB Systems, State College, PA, U.S. A.; 21Jniversity of Florida, Gainesville, FL 32611, U.S.A.

(Accepted: 16 October 1991)

Abstract. We present algorithms for the single-source uncapacitated version of the minimum concave
cost network flow problem. Each algorithm exploits the fact that an extreme feasible solution
corresponds to a sub-tree of the original network. A global search heuristic based on random extreme
feasible initial solutions and local search is developed. The algorithm is used to evaluate the complexity
of the randomly generated test problems. An exact global search algorithm is developed, based on
enumerative search of rooted subtrees. This exact technique is extended to bound the search based on
cost properties and linear underestimation. The technique is accelerated by exploiting the network
structure.

Key words. Concave-cost network flow, uncapacitated, single-source, global optimization, random
search algorithms.

1. Introduction

1.1. GENERAL PROBLEM

The single-source uncapacitated (SSU) version of the minimum concave-cost
network flow problem (MCNFP) requires establishing a minimum cost flow from
a single generating source to a set of sinks, through a directed network. All arcs
are uncapacitated, indicating that the entire source flow can pass through any arc.
The SSU MCNFP can be stated formally as follows:

Given a directed graph G = (NG, AG) consisting of a set iVG of IZ nodes and a
set A, of m ordered pairs of distinct nodes called arcs, coupled with an n-vector
(demand vector) d = (dj) with d, < 0 and di 3 0, i = 2, . . . , 12, and a concave cost
function for each arc, cli(xij), then solve

global min

subject to

c xk, - c xik = di, vie N,

(k.r)EA,; (1. k)EAc;

and

0 s x,, 1 V(i,;)EA,

(1)

(2)

Journal of Global Optimization 1: 309-330, 1991.
0 1991 Kluwer Academic Publishers. Printed in the Netherlands.

310 G. M. GUISEWITE AND P. M. PARDALOS

All constraints and demands are assumed to be integral. The requirement that
only d, < 0 corresponds to the single-source case. The lack of an upper bound for
the xii gives rise to the uncapacitated case.

The SSU MCNFP is a concave optimization problem over a convex poly-
hedron. This indicates that if a finite optimal solution exists, then there exists an
extreme point of the feasible domain that is optimal [2]. The concave case differs
from the linear case in that a local optimum need not be a global optimum. For
the SSU case an extreme flow (corresponding to an extreme point) is a tree 1233.
The leaves of the solution tree correspond to a subset of the sink nodes. The
integral constraints and demands give rise to extreme flows of integral value.

A SSU MCNFP has a finite optimal solution if it contains no negative cost
cycles, and all sinks are reachable from the source (i.e., there exists a directed
path from the source to each sink). The latter requirement is necessary for the
existence of a feasible flow. The presence of a negative cost cycle would imply an
unbounded negative cost solution; the absence of such a cycle guarantees a finite
solution [13]. Applications that give rise to SSU MCNFP are discussed in [lo].

1.2. ADDITIONAL CONSTRAINTS

We consider in this paper cases of the SSU MCNFP with arc flow costs that are
non-negative, non-decreasing and concave. This property of objective functions
accurately reflects cost functions for models of real world problems in areas such
as production planning and transportation analysis. Concave costs in these
settings correspond to economies of scale. In a production setting, decreasing
concave arc cost functions would exclude the influence of demand on production.

This limitation on arc costs facilitates the computation of local optima for SSU
MCNFP. Checking for a local optimum, for the constrained costs, can be achieved
by solving a series of single-source shortest weighted path problems. In addition,
if a solution exists for a problem, then a bounded solution exists. For general
costs, linear network programming problems would have to be solved, and
unbounded solutions could result. This entails more processing, and complicates
the generation of test problems.

1.3. LOCAL SEARCH ALGORITHMS

In Section 2 we introduce a global search heuristic based on random extreme
feasible solutions and local search. A solution X to a SSU MCNFP is locally
optimal if no better solution exists in a specified neighborhood of X. Varying the
definition of neighborhood results in different conditions for a local optimum. The
standard marginal definition of local optimality defines a neighborhood of X to be

N,(X) = {X’JX’ satisfies (1) and (2) and (IX - X’((< E}

for a specified vector norm and E >O. Local search based on N, for concave

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 311

optimization is explored by Minoux [14] and Yaged [22]. For the single commodi-
ty case with fixed-charge arc costs, all extreme points are local optima. This led to
the development of the following generalized definition of neighborhood by Gallo
and Sodini [7]:

N&X) = {X’IX’ satisfies (1) and (2) and X’ is an adjacent extreme
flow to X},

Here, X’ is an adjacent extreme flow to an extreme solution X if X’ is an extreme
flow, and X U X’ contains a single undirected cycle.

An even more relaxed definition of neighborhood is the following:

N,&X) = {X’lX’ satisfies (1) and (2) and X’ is an adjacent flow to X}

Here, X’ is an adjacent flow to an extreme solution X if X’ results from rerouting
a single sub-path of flow within X. This concept of neighborhood was developed
by Guisewite and Pardalos [9] for single-source problems, and independently by
Plasil and Chlebnican [19] for the multi-commodity case. We employ both NAEF
and NAF neighborhoods in our global heuristic. Results in [9] indicate that the
choice of neighborhood for local search affects the processing time for conver-
gence. In Section 2 we demonstrate that the choice of neighborhood also affects
the processing accuracy of the global search heuristic.

1.4. TEST PROBLEMS

Test networks are generated in a random fashion. Arcs are generated by
computing two random integers uniformly distributed in [l, 2, . . . , n], where n is
the number of nodes in the network. Duplicate arcs and arcs of the form (i, i) are
discarded. After the specified number of arcs is successfully generated, the
resulting network is tested for connectivity by solving a single source shortest path
problem. If the connectivity is suitably high, then cost functions are generated for
each arc. Unless stated otherwise, each cost function is of the form CQX~, where
the aii are uniformly distributed in [l, 2, . . . , 1001 and the pij are uniformly
distributed in [. 1, .2, . . . , 11. The test generator. is implemented so that if two
problems contain the same number of nodes, and the same random number seed,
but have a different number of arcs, then the smaller network generated is a
subset of the larger network.

1.5. PROCESSING EQUIPMENT

The algorithms developed in subsequent sections were implemented on one or
multiple microprocessors. Our processing system consists of one to twenty
Transputer TSOOs. The Transputer is a microprocessor developed under the
European Espirit project, and is designed to facilitate parallel processing. Each 20
MHz TSOO consists of a 10 MIPS fixed point processor, a 1.5 MFLOPS floating-

312 G. M. GUISEWITE AND P. M. PARDALOS

point co-processor, a 4 KByte cache, and 4 DMA I/O processors, all on a single
chip. Our system includes 1 MByte of memory per processor. Experience
indicates that 3 to 5 MIPS are achievable by each processor for large general
processing applications. Four processors are configured in a pipeline on a single
board, with the remaining DMA links connected to the board edge through a
cross-bar switch.

1.6. OVERVIEW

Efficient algorithms for the SSU MCNFP have been found only for a small set of
structured problems. This is not surprising as the general global search problem
for the SSU MCNFP is known to be NP-hard [S], [9], [13]. An overview of
existing techniques for general MCNFP can be found in [lo]. Due to the
complexity of global search, numerous techniques based on local search have
been developed. In Section 2, a global search heuristic based on both random and
local search is presented and analyzed. In Section 3 of this paper an exact global
search technique for the SSU MCNFP is developed.

2. Random Search

Existing techniques to locate global optima for SSU MCNFP can, in the worst
case, require time exponential in the size of the problem. This indicates that
computing exact solutions to large problems in a reasonable amount of time may
not be achievable. A global search technique should offer an increased probability
that an improved solution is found, as elapsed processing time increases. Local
search provides a means to improve upon a given extreme feasible solution, but
offers no guarantee on the nearness to a global optimum. In [9] it is noted that the
choice of initial solutions for SSU MCNFP has little effect, in the average case, on
the value of the local optimum computed. This result was observed for a range of
greedy and non-greedy approaches to generating basic feasible solutions for SSU
MCNFP.

Exploiting the above observations results in a global search heuristic for SSU
MCNFP. Applying local search to randomly generated extreme feasible solutions
should generate a range of candidate solutions. As more initial solutions are
processed, the probability of obtaining a global optimum increases. Even if the
overall global solution is not located, the best local optimum obtained should
provide a “good” approximation to the global optimum.

In the following sections a global search heuristic is developed and analyzed. In
Section 2.1 an algorithm to generate random extreme feasible solutions is
provided. In Section 2.2 this algorithm is incorporated into a global search
heuristic. The probabilistic aspects of the heuristic are presented. In Section 2.3
processing results for randomly generated test problems are presented. In Section
2.4 the global search heuristic is used to analyze the complexity of test cases,
based on the arc cost functions employed.

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 313

2.1. GENERATING RANDOM INITIAL SOLUTIONS

Any extreme feasible solution to a SSU MCNFP is a tree, rooted at the sink, with
leaves that correspond to a subset of the sink nodes. Randomly selecting arcs for
a solution tree is inefficient, as disconnected arcs would have to be detected and
removed. A substantial improvement, in terms of processing time, can be
achieved by randomly generating paths from the source to each sink. Starting the
path generation from the source could result in a non-extreme solution (i.e.,
intersecting paths). Also, decisions as to where to start each path would be
required. Generating paths backwards from each sink simplifies the process. A
backward path terminates whenever a previously visited node, from a complete
path to another sink, is encountered. The basic algorithm is presented in Figure 1.

Generating a backward path from ti to a visited node presents some difficulties.
Figure 2 depicts a situation where the process can dead-end due to a cycle. If the
generation process generates the arc sequence (4, t;), (3,4), (5,3), (4,5), then a
cycle (and a non-extreme solution) results. This can be avoided by labelling the
current search path, visited(node) = 1, and not permitting a node to be visited
twice. If the sequence generated is (4, ti), (3,4), (5,3), (1,5), (1,2) then the
process (with labelling to avoid cycles) dead-ends at node 2. This case could be
handled by maintaining a stack for the current path, popping the stack when a
dead-end is encountered, and identifying the remaining candidate nodes reach-
able (backwards) from the current node by excluding those marked as dead-ends.
Another approach would be to avoid dead-ends by continually identifying nodes
currently reachable from the source node, in a network with nodes satisfying
visited(node) = 1 removed. An alternate approach was chosen to avoid the
overhead in the above techniques. In the event of a detected dead-end, the
process restarts at the current sink with a different seed to the random number
generator. Although the process could revisit dead-ends, in practice it has been
found to be very efficient. The resulting algorithm is presented in Figure 3. The
time to generate initial solutions for large test cases (1000 nodes, 5000 arcs, and
50 sinks) averages 0.25 seconds. This is significantly faster than the greedy
techniques evaluated in [9].

Processing results for local search applied to random initial solutions and
greedy initial solutions are summarized in Figure 4. The results correspond to 10

(1) Establish a sink labelling f,. I,. . t,
(2) Mark each node except the source as not visited

r,isited(j) = 0. Vj E A li - ‘S’ \ f
rGsired(S) = 2

WHILE (3; 3 Llisired(r,) = 0)
((3) Randomly generate a backward path p,,,, ,,

from f, to any node II,, satisfying visired(rz,,) = 2
(1) Mark all nodes in p,,,,.,, visited

visirrrl(j) = 7. Vj E p,,,, ,,I

Fig. 1. Generating a random extreme solution

314 G. M. GUISEWITE AND P. M. PARDALOS

Fig. 2. Example network for random solution generation.

test cases, each with 50 nodes, 250 arcs, and 20 sinks. The results for random
search are averaged over 200 random initial solutions for each test case. The rate
of convergence for random initial solutions is significantly slower than for the
greedy initial solutions. This is due to an increased number of iterations required
for convergence. The objective value of the computed solutions generated from
local search with random starting solutions is roughly the same (on average).

2.2. RANDOM SEARCH ALGORITHM

Coupling the random initial solution algorithm with a local search algorithm
results in the global search heuristic in Figure 5. The algorithm is a variation of
one proposed in Pardalos [18] using gradient local search for general concave
optimization. The following probabilistic analysis is generalized from a result
found in [18]:

Suppose that V= {ul,. . . , uI} is the set of all local optima to the current
problem. Without loss of generality, assume that the cost of the local optima,
C(u,), satisfy

C(ul) s C(u,) 6. . . s C(UI) . (3)

(1) current.node = t,, p,,, ,.,, = 0
WHILE { I’isited(currenf.node) # 2)

((2) Identify candidates for previous node
CANDIDATES = { jl(j. current.node) E A,,

AND visited(j) = 0 or 2)
(3) IF (/ CANDIDATES1 = 0) THEN

{ current.node = t,
visited(j) = 0 Vj E p,,,,,

P,,,,.,, = 01
ELSE

{randomly select n,,,r, E CANDIDATES
visifed(currenr.node) = I

P,,,,.~, = (npVL., 1 current.node) + P,,,,.,,
current.rzode = r~,~~~~,.}}

Fig. 3. Algorithm to find a random path from t, to a visited node.

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 315

Greedy
Random

Processing Number of
time (sets) iterations

12.6 6.5
31.7 16.8

Average number
of subproblems

172.4
413.6

Fig. 4. Comparison of local search techniques

DefineSi={u ,,..., uj}CV,fori=O ,..., I. If N extreme feasible solutions are
randomly generated, local search is applied to each solution, then the probability
that no local optima in Si is obtained is Pi(O) = (1 - pi)“, where p, is the
probability that a single randomly generated initial solution has associated local
optimum in Si. More generally, the probability that k local optima in Si are
located, given N random initial solutions is

P;(5=k)=(~)pl(l-pi)v~“, k=O ,..., A’.

Here, 5 is a binomially distributed random variable that arises from sampling with
replacement from the elements in S(i) and V- S(i).

The value of the p, depends upon several characteristics of the current problem:

l The structure of the network
l The arc cost functions
l The neighborhood and search algorithm used for local search
l The method of generating “random” initial solutions.

The first three characteristics account for the mapping of extreme feasible
solutions to the associated local optima. The last characteristic accounts for the
difficulty in generating truly random initial solutions. In fact, the random solution
technique described in the previous section could be described as a locally random
technique. The process generates random paths by making local decisions based
on arcs adjacent to the current node. Alternate initial solution techniques could
be based on randomly generating break points (forks in the paths), random
selection of nodes, etc.

For local search with neighborhood N, the number of local optima, I, can be
the number of vertices of the constraint polytope. For local search based on
neighborhood NA EF or NA F, the number of local optima is less for problems with

current. best.cost = BIG
WHILE (a specified time or solution count has not been exceeded)

{generate a random extreme feasible solution X
apply local search to X
IF(new.solution.cost < current. best.cost)

current. best.cost = new.solution.cost)

Fig. 5. Global search heuristic.

316 G. M. GUISEWITE AND P. M. PARDALOS

vertices of differing objective function value. This is a result of local search being
defined in terms of neighboring vertices (extreme feasible solutions), as opposed
to neighboring, possibly non-extreme feasible solutions. Still there can exist an
exponential number of local optima that are not globally optimal, as is shown by
the following example.

The network in Figure 6 corresponds to a network formulation of a 3-
satisfiability problem. The 3-SAT problem is known to be NP-complete [8]. The
network formulation of 3-SAT is developed in [lo]. All arcs have zero cost,
except for arcs (Vi,, r,i) and (If;,, F,i). These arcs have cost of one if they carry
non-zero flow. The following notation is used to establish the existence of 2k local
optima, where k is the number of clauses; recall that xi, denotes the flow on arc
(4 j):

(-+,.T,, > 0) A (+,.F,, = 0) 3 v, = T (TRUE)

(xv,,.~,, = 0) A (+, > 0) * Y,, = F (FALSE)

k’,,.T,, > ‘1 A 6% .F 1, ‘, > 0) + yi = U (UNDETERMINED) .

Note that the assignment V,, = T, V,? = T, V,, = T, i = 1, . . . , k, is the unique -
assignment satisfying the clauses (V,, A (I,$? v y,)) and (V,? A (vi, v v.3)), i =

Fig. 6. Network with an exponential number of non-global local optima

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 317

1, . . . , k. Denote this assignment for clause i as CL, = 1. This assignment
determines the unique flow that is a global optimum, with cost 3 * k. The cost per
clause is 3. Note, also, that the assignment Vjl = U, Vi, = T, and Vi3 = F results in
a valid flow at any clause i. Denote this assignment for clause i as CL, = 0.
Assignment CL, = 0 results in a local optimum, as at least two flow paths must be
rerouted to alter the flow cost (one at V,, and one at V,,). The cost per clause for
this assignment is 4. Combining the above observations, there exist at least 2
local optima. A local optimum exists for each of the assignments CL, = 0 or 1,
i=l,..., k. Only one of these local optima is a global optimum.

Based on the fact that there can exist an exponential number of paths between
two nodes in a genera1 network, and the fact that NAF search considers all such
paths during one iteration, an exponential number of vertices may be fathomed in
one iteration of NAF based local search. In the above analysis, this would imply
that a significantly smaller N would be required to find a “good” approximation to
a global optimum.

Some qualification is necessary in defining “good”. The desired optimal cost is
f(u,). “Good” in the above sense indicates that a solution x is found in the range
Au,> s”f(x> MUj) f or small j. Even for small j, f(uj) - f(u,) could be large. It is,
also, possible that a large number of vertices result in local search converging to a
poor local optimum.

Regardless of the p, for a specific problem, P,(O) decreases as the number of
initial solutions, N, increases. This indicates that the algorithm expects to make
progress as N increases. However, for large k, the size of N required to find the
global optimum with large probability can be prohibitive. Results for moderately
sized networks, as presented in the following sections, indicate that the heuristic
performs well for randomly generated test cases.

2.3. PROCESSING RESULTS

The global search heuristic was implemented on a multiple micro-processor
system. An asynchronous approach, in which each processor executes indepen-
dently on a random starting solution, was used. The main routine grants
permission to start a new problem based on the overall number of problems
processed up to current point in time.

Empirical results for the global search heuristics, presented in Figures 7-9, are
promising for the following reasons. In Figure 7, results for 100 random test cases
for each problem size indicate that the heuristic, with 200 starting solutions,
locates the optimal solution for problems with known solutions. In all cases, the
heuristic finds the best known solution, as compared to local search with greedy
initial solutions. In Figure 8, results indicate that multiple processors can be
effectively utilized, even in the case of small N. Figure 9 demonstrates that the
best overall solution is, in general, found early in the search, and that the local
optima tend to be significantly better than the random initial solutions.

318 G. M. GUISEWITE AND P. M. PARDALOS

Problem size
(nodes/arcs/sinks)

10/50/s 251125110 501250120

Greedy 84% 71% 54%
Heuristic 100% 100% 100%
Enumeration 100% X X

Fig. 7. % of cases that the best known solution was located.

2.4. EVALUATING THE COMPLEXITY OF TEST PROBLEMS

The global search heuristic cannot determine if a global optimum is found.
However, results for multiple initial random solutions can be used to evaluate the
relative complexity of test problems for SSU MCNFP, and to compare alternate
local search algorithms. The measures used in this process are

o Best solution detected.
l Frequency of the best solution detected (approximation of p,).
l Number of distinct local optima detected.

The general idea is that a problem should be more difficult if it gives rise to a
large number of distinct local optima, or if the probability of detecting a global
optimum is low.

Examples of assumed easy and difficult problem characteristics are presented in
Figures 10-11. Figure 10 represents a case with a large number of local optima,
but a high probability of locating the (assumed) global optimum. Figure 11
corresponds to the worst case, a large number of computed local optima and a
low frequency for the best detected local optimum. Each figure presents the
relative frequency of computed objective values for 200 local optima.

The effects of varying the concavity of the arc cost functions on problem
complexity are summarized in Figures 12-13. The test cases are generated with

* 20 0 40 + 80 + 160 * Ideal
Initial Initial initial Initial

20

15

SPEED-UP 10

5

0
0 5 10 15 20

NUMBER OF PROCESSORS
Fig. 8. Multiprocessor performance of the global search heuristic.

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 319

240 -

SOLUTIONS 170

130 7 I
0 50 100 150 200 250 300 350 400

TIME (SECONDS)

83- 82 .- 8 n

81 . . n n n

OBJECTIVE 80 .. n

VALUE OF 79 ..
n am

COMPUTED 78 .. n n E n

LOCAL 77.- I I mmmmm n n n mm -

OPTIMA 78 ..
75 ..

L: & L LILi’ 2’

74.- mm I I mm BE m-mm
73’ -: I I

0 50 100 150 200 250 300 350 400
TIME (SECONDS)

Fig. 9. Solutions over time, initial solutions and computed local optima

40 -
35 .
30 .
25 -

FREQUENCY 20 -.

73.325 75.337 75.363 77.354 78.353 79.364 82.392
OBJECTIVE VALUE

Fig. IO. Characteristics of an easy problem. computed local optima.

320 G. M. GUKSEWITE AND P. M. PARDALOS

30 -

25 . .

20 ..

FFmuENcY 15..

10 . .

5

0
66.32 71.33 72.36 73.36 74.37 70.4

OBJECTIVE VALUE

Fig. 11, Characteristics of a difficult problem, computed local optima.

+ 20 SINKS, 0 30 SINKS, -t 40 SINKS, 0 49 SINKS,

* 20 SINKS. * 30 SINKS, -X- 40 SINKS, -X- 49 SINKS.

OJ
1 2 3 4

TESTSET

Fig. 12. Number of distinct local optima detected (varying p).

FRHxaJcY
OF FINDING

B;Si KNOWN
SOLUTION (%)

1 2 3 4

TEST SET

Fig. 13. Frequency of best known solutions obrained (varying /3).

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 321

* 20 SINKS, 0 30 SINKS, * 40 SINKS, + 49 SINKS,
NW) NW) NW) NW)

-A- 20 SINKS, * 30 SINKS, -x- 40 SINKS. -*- 49 SINKS.
N(AEF) N(AEF) N(AEF) WW

1 2 3 4

TEsTsEr

Fig. 14. Number of distinct local optima detected (varying a).

random arcs, and randomly generated arc costs of the form ajj * a$. For each test
set, cxij is sampled uniformly from {1,2, . . . , lo}. Test set 1 samples the pij from
{.l, .2,. . , l}. Test set 2 assigns all pij to 0.1. Test set 3 assigns all pi, to 0.01.
Test set 4 assigns all pjj to 0.001. Each test set corresponds to 10 distinct test case,
each applied to 200 randomly generated starting solution. Figure 12 compares the
average number of distinct local optima detected, for NAEF based local search.
Figure 13 compares the average number of times the best known solution was
detected, for NAF and NAEF based search.

Results indicate that the number of distinct local optima increases as the pi,
decrease, for the majority of the cases. The frequency of detecting the best known
solution remains nearly constant. Also, local search based on the NAF neighbor-
hood gives rise to fewer distinct local optima, and detects the best known solution
a higher frequency of the time.

Figures 14-15 provide similar results for test cases in which the ayii are varied.
Test set 1 assigns all cxjj to 1. Test set 2 samples all CY;, from (1, . . . , lo}. Test set 3
samples all cy;, from (1, . . , loo}. Test set 4 samples all aij from (1, . . . , lOOO}.

* 20 SINKS, 0 30 SINKS, -t 40 SINKS, + 49 SINKS,
NW) NW) NW) NW)

-A- ‘20 SINKS, -A- 30 SINKS, -X- 40 SINKS, -x- 49 SINKS,
WW N(AEF) N(AEF) N(AEF)

60
55

-z
OF flNDlffi

SESTKNOWN g
SOLUTION (%) r)

25
20

1 2 3 4

TESTSET

Fig. 15. Frequency of best known solutions obtained (varying a)

322 G. M. GUISEWITE AND P. M. PARDALOS

In the majority of the NAF cases, the number of distinct solutions decreases, and
the frequency that the best known solution is detected increases, as the variability
of the aij increases. For the NAEF search, no distinguishable pattern is evident. As
in the pij test cases, the NAF neighborhood gives rise to fewer distinct local
optima, and detects the best known solution a higher frequency of the time.

3. Exact Global Search

In this section, an exact global search algorithm is presented for SSU MCNFP.
The full algorithm is based on branch-and-bound enumeration of extreme feasible
solutions. The basic enumeration subset of the algorithm exploits the fact that
extreme feasible solutions correspond to sub-trees in the network. These sub-trees
are constructed by establishing a path from each sink to the source node.
Bounding the search is achieved using linear underestimation after a path is
constructed. This rflows the underestimating function to gain efficiency as the
search progresses. The basic approach is similar to that of Gallo, Sandi, and
Sodini [6]. The approach presented in this section differs in the method of
enumerating extreme feasible flows. Also, the effects of initial solution techniques
on the branch-and-bound search, and the exploitation of network structure are
evaluated here.

Numerous exact algorithms have been proposed for the general MCNFP [lo].
Extreme point ranking methods [15], [17] rely on linear underestimation applied
to the initial problem. Results in this section demonstrate that the initial
underestimation can be quite poor for this class of problems. Some branch-and-
bound algorithms for MCNFP perform branching on the arc cost functions to
improve the linear underestimation [l], [4], [12], [20], [21]. For these approaches,
worst case processing time can exceed a brute-force enumerative approach. Other
branch-and-bound approaches, such as in [5], suffer severe performance penalties
when degenerate problems are encountered [lo]. Dynamic programming solutions
to MCNFP require excessive storage requirements [3]. The proposed algorithm
can incorporate dynamic programming to efficiently solve subproblems, while
limiting the storage requirements.

3.1. THE BASIC ALGORITHM

The basis of the exact global search algorithm is a procedure that systematically
enumerates the extreme feasible solutions of the current SSU MCNFP. As noted
earlier, these correspond to sub-trees of G = (NG, AG) that establish a path from
the source to each sink. An efficient approach to enumerating the desired
sub-trees is a variation of the technique presented in Section 2.1 to generate
random extreme solutions. A path is constructed from each sink to the source
node over reversed arcs. As in the random search algorithm, non-extreme
solutions (cycles) are avoided by labelling nodes as follows:

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 323

0 if node i is unused
visited(i) = 1 if node i is in the current sink path (5)

2 if node i is in a previous path .

This labelling defines a partition of the nodes of G

N,;=N$JN;;UN; (6)

where n, E N;; implies visited = i.
The current state of the enumeration process is summarized by a collection of

stacks, one for each completed path from a sink to the source, and one for the
current active path. Each entry within a stack contains a node in the path defined
by the stack. For each node, additional information is maintained, including the
visit value, a pointer to the next element in the path, and a pointer to the current
in-coming arc under consideration for the node. Processing within a stack is
similar to any branch-and-bound procedure. However, additional processing is
required to handle cases where a stack becomes empty, or a path is completed.

If a stack becomes empty during the enumerative search, augmenting paths to
the previous stack have been fathomed. The current stack is popped, and the
previous stack becomes active again at its top node. This implies that the entries
in the previous stack have their visit value reset to 1. When a path is completed,
all entries within the current stack have their visit values set to 2. When the last
stack is popped, the search is complete.

3.2. IMPROVED SEARCH

The algorithm presented in Section 3.1 does not have processing time propor-
tional to the number of extreme feasible solutions for the current problem. This is
a result of the dead-ends described in Section 2.1 for the random initial solution
technique. A worst case example of the effects of a dead-end is presented in
Figure 16. The current search node is 1, and the current path is depicted by the
thicker arcs. For this case, the dead-end contains a clique of size k. The
enumerative search process would enumerate all paths through the clique before
establishing that no feasible path exists to the source or to any node in a previous
path.

Fortunately, this can be avoided with some additional processing. When a new

Cllque of sire k

Fig. 16. Worst case dead end for enumerative search.

324 G. M. GUISEWITE AND P. M. PARDALOS

node is added to the current search path, all nodes reachable on the network
G’=(N;UN&A;,) are computed, where A& is the set of arcs in A, connecting
nodes in Ni U Ni . The reachable nodes can be identified by solving a single-
source shortest weighted path problem. For the example, the entire clique would
be removed from consideration when node 2 is added to the current search path.

3.3. BOUNDING THE SEARCH

The global search algorithm can be extended to exploit the cost functions assigned
to the arcs. For the case with non-decreasing cost functions, the cost incurred by
an arc at an intermediate point in the algorithm cannot decrease with the addition
of other paths. This can be exploited by maintaining a running cost of the current
search at each position of the stack. This corresponds to the cost of the current
flow up to the active node being processed. If the current flow cost exceeds the
current best solution cost, then the search can be terminated for the current path,
and the next path in the search can be considered. This approach is referred to as
cost bounding.

The arc cost functions can be exploited further by using linear underestimation
to project a lower bound on the cost of extending the current path. This is
achieved by

l Computing the maximum possible flow through each node i, based on the
sinks reachable from node i, node.mux(i).

l Maintaining the current flow through each node i, node.current(i).
l Maintaining the current flow through each arc (i, j), UK. current(i, j).

Initially, the maximum flow possible for any arc (i, j) is node.mux(j). The
minimum flow through any arc, initially, is 0. During the search process the
bounds on arc (i, j) can be tightened:

upper.bound(i, j) = node.max(j) - (node.current(j) - arc.current(i, j))

lower. bound(i, j) = arc. current(i, j). (7)

The improvement in the bounding process is pictured in Figure 17.
The linear underestimation process uses the refined bounds and the currently

unsatisfied sink nodes to project a lower bound on the final cost of the current
search. This is achieved by computing new arc costs corresponding to the linear
underestimating cost:

linear. cost(i, j) =
cLj(upper.bound(i, j)) - cij(lower.bound(i, j))

upper. bound(i, j) - lower. bound(i, j) ’ (9

Then the cost of an augmenting flow on arc (i, j) incurs cost

c:,(xjj) = Zinear.cost(i, j) * xii (91

A single-source shortest weighted path problem can be solved to obtain the

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 325

upper.bound upper.bound

lower.bound

INITIAL CASE I NTERMEDI ATE CASE

Fig. 17. Linear underestimation improvement.

shortest path from the source to each currently unsatisfied sink, using the
linear.cost vector as the arc weights.

3.4. EXPLOITING NETWORK STRUCTURE

The enumeration process can be further improved by detecting subproblems that
can be more efficiently solved using other techniques. For example, the network
in Figure 18 has a subproblem to sink tj that can be solved using a shortest
weighted path algorithm. More general cases that are computationally expensive
for enumeration, but more efficiently solvable by dynamic programming include
sub-networks that have small total in and out-degree, and contain a large number
of nodes.

Some simple subproblem cases can be detected by computing spanning trees for
small perturbations of network G. For example, if subproblems with in-degree
and out-degree of one are sought, then O(n) spanning trees need to be computed.
For each node nj E N,, two problems are solved. The first identifies those nodes
no longer reachable from the source when yli is removed from network G,
denoted by SCUT,. The second identifies nodes that are disconnected from all
sinks when yli is removed, denoted by TCUT,. The intersection of these sets for
each node pair identifies a candidate subproblem, SUB, = SCUT, fl TCUTi. The
process can be applied once, and the maximal subproblems can be removed
iteratively.

Remalnlng network

Fig. 18. Simple subproblem example.

326 G. M. GUISEWITE AND P. M. PARDALOS

In general, the problem of identifying the best subproblem can be NP-
complete. For example, if we require that a subproblem have a specified lower
bound on the number of nodes, and search for the node set with minimal total
degree, then the problem corresponds to the Graph Partitioning problem [8].
However, heuristics, such as the Kernighan-Lin algorithm [16], have been
successful identifying subgraphs with the desired property, or near to the desired
optimum.

The enumeration process can avoid re-solving the detected subproblems by
collapsing each subproblem into a single super-node. When a super-node is
encountered during the search process, the sub-problem can be solved if it is new,
or, its solution can be extracted using a look-up table if it was previously solved.

The overall process of exploiting subproblems can be viewed in relation to the
send-and-split algorithm [3]. In send-and-split, the optimal flow for the entire
network is solved using dynamic programming. This requires substantial storage,
but avoids recomputing subproblems. The full enumeration algorithm requires
little storage, but recomputes all subproblems. By exploiting a select subset of the
subproblems, the resulting algorithm gains efficiency, while limiting the storage
requirements based on available resources.

3.5. PROCESSING RESULTS

Variations of the enumerative search process were applied to randomly generated
problems. The problems processed were of moderate density. Analysis of the
problems indicated that dead-ends did not have a serious impact on the search.
As a result, the search for unreachable nodes, as described in Section 3.2, was not
performed. The networks were, also, preprocessed to identify subproblems with
in-degree and out-degree equal to one. No significant subproblems of this type
were detected. The algorithms used included

l Full enumeration (with no cost bounding)
l Cost bounding
l Cost bounding with linear underestimation
l Initial solutions provided.

In Figures 19 to 22, results are provided for four problem sets, each generated
with a different random number seed. The effect of varying the number of sinks
while maintaining the network structure is investigated. The results indicate that
problems of moderate network size and density are solvable using the algorithm
with cost bounding. Linear underestimation becomes efficient only for a few
difficult problems. This is due to linear underestimation requiring a substantial
amount of additional processing at each path completion. This could be avoided
by selectively applying linear underestimation based on the current path cost, the
previous path cost, and the amount of change between the current path and
previous path.

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 327

TEST SET 1

Nodes/Arcs/Sinks Full cost
enumeration bounding

Linear
underestimation

1014015 4.64 0.13 0.36

1516015 753.08 0.22 0.52
15160110 7766.13 8.97 18.55

2018015 31820.84 1.15 2.50
20/80/10 X 25.84 41.77
20180115 X 624.96 1202.03

25/100/5 X 0.91 1.27
25/100/10 X 6.63 12.67
251100115 X 5224.91 12808.24
25/100/20 X 17908.40 44663.96

30/120/5 X 1.42 3.48
30/120/10 X 23.67 60.88
301120115 X 351.29 800.04

Fig. 19. Global search results-Test set 1.

In Figure 23, results indicate that the quality of the initial solution has a direct
relation to the performance of the search, when cost bounding is employed. These
results, also, provide a comparison of the performance of initial solutions
computed using linear underestimation, random search, and greedy algorithms
coupled with local search. The initial solutions obtained using random search
were the best for all test cases. In fact, random search detected the global

TEST SET 2

NodeslArcslSinks Full
enumeration

cost
bounding

Linear
underestimation

1014015 7.57 0.37 0.53

1516015 311.89 0.42 0.58
15/60/10 3869.25 0.82 1.10

20/80/5 3525.02 12.25 13.69
20/80/10 X 21.36 26.96
20/80/15 X 32.70 47.60

25/100/5 X 0.24 0.54
25/100/10 X 32.28 61.64
25/100/15 X 138.83 247 56
25/100/20 X 717.58 1254.99

30/120/5 X 1.61 3.58
30/120/10 X 63.43 154.51
30/120/15 X 2942.59 7320.70

Fig. 20. Global search results-Test set 2.

328 G. M. GUISEWITE AND P. M. PARDALOS

TEST SET 3

Nodes/Arcs I Sinks Full
enumeration

cost
bounding

Linear
underestimation

10/40/5 2.50 0.08 0.13

1516015 195.34 0.51 1.34
15160110 697.81 0.66 1.55

2018015 1940.52 1.11 3.03
20180110 X 1.71 4.36
20180115 X 10.22 20.33

25/100/5 X 2.74 6.99
25/100/10 X 5.48 9.49
25/100/15 X 8.10 11.93
25/100/20 X 658.60 1292.08

30/12015 X 6.01 8.47
30/120/10 X 65.40 119.60
301120115 X 101.29 180.51

Fig. 21. Global search results-Test set 3.

optimum for all test cases in Figures 19 to 22. The initial solutions computed using
local search were, on the average, better than those obtained using linear
underestimation. Figure 24 compares the number of solutions that were fully
processed for enumerative search with cost bounding, and enumerative search
with linear underestimation.

TEST SET 4

Nodes/Arcs/Sinks

10/40/5

1516015
15160110

Full cost Linear
enumeration bounding underestimation

9.51 0.33 0.41

90.47 0.16 0.35
2317.58 0.72 1.41

2018015 5318.94 0.96 1.88
20/80/10 X 3.23 6.60
20180115 X 2055.09 405.42

25110015 X 2.41 7.55
25/100/10 X 237.50 448.99
25/100/15 X 3300.59 7354.37
25/100/20 X 5134.41 11672.19

30/120/5 X 0.72 1.60
30/120/10 X 676.26 1747.11
301120115 X (>60 hours) 51276.51

Fig. 22. Global search results-Test set 4

MINIMUM CONCAVE-COST NETWORK FLOW PROBLEM 329

Test Set Technique Initial
(251 lOO/ 15) Solution

1 GREEDY 1589.76
LINEAR 1745.48
RANDOM 1506.38

2 GREEDY 1007.78
LINEAR 1133.64
RANDOM 943.46

3 GREEDY 764.12
LINEAR 1111.01
RANDOM 764.12

4 GREEDY 1600.26
LINEAR 1869.02
RANDOM 1558.54

Fig. 23. Global search results - Varying initial solutions

Time
(seconds)

5224.91
6351.81
3583.58

138.83
152.96
115.46

8.10
13.40

IS.10

3300.59
3783.58
2949.78

Test set Nodes/Arcs/Sinks cost Linear
bounding underestimation

1 20/80/ 15 971 598
4 20180115 59222 519
1 251100115 17512 8927
4 25/100/15 928 162
I 30/120/15 72 27
4 30/120/15 X 113Y2

Fig. 24. Global search results - Number of solutions examined

4. Summary

Two algorithms for single-source, uncapacitated, concave-cost network flow
problems were presented. The first, a random search algorithm, was demon-
strated to be useful for obtaining good approximations to the global optimum.
The processing time of the algorithm is dependent on the time required to
perform local search, starting at an extreme feasible solution. In [ll], empirical
results indicate that local search processing time increases as a polynomial
function of the number of nodes, network density, and the number of sinks. This
indicates that the probabilistic algorithm can be used to solve large concave
network flow problems.

The second algorithm presented, an exact global search algorithm, was demon-
strated to be useful for problems of moderate size and density. This approach has
the benefit of solving “easy” problems quickly, where an easy problem has few
extreme feasible solutions, or has few solutions with cost near to the cost of the
global optimum. The algorithm gains efficiency by bounding the search based on
cost properties, and projected cost based on linear underestimation. Initial

330 G. M. GUISEWITE AND P. M. PARDALOS

solutions obtained using random search and local search provide a good initial
approximation to the global optimum in most cases.

References

I. Bornstein, C. T. and Rust, R. (1988), Minimizing a Sum of Staircase Functions Under Linear
Constraints. Opfimizarion 19 (2), 181-190.

2. Eggleston. H. G. (1963), Convexity, Cambridge Tracts in Mathematics and Mathematical Physics
No. 47. Cambridge University Press, Cambridge, Mass.

3. Erickson. R. E., Monma, C. L., and Veinott. Jr., A. F. (1987), Send-and-Split Method for
Minimum-Concave-Cost Network Flows, Mathematics of Operations Research 12 (4). 634-664.

4. Falk. J. E. and Soland. R. M. (1969), An Algorithm for Separable Nonconvex Programming
Problems, Management Science 15 (9), 550-569.

5. Florian. M. and Robillard, P. (1971), An Implicit Enumeration Algorithm for the Concave Cost
Network Flow Problem, Management Science 18 (3), 184-193.

6. Gallo, G., Sandi. C., and Sodini, C. (1980), An Algorithm for the Min Concave Cost Flow
Problem, European Journal of Operations Research 4, 249-255.

7. Gallo. G. and Sodini, C. (1979). Adjacent Extreme Flows and Application to Min Concave-Cost
Flow Problems, Nefworks 9, 95-121.

8. Garey, M. R. and Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company. San Francisco, CA.

9. Guisewite, G. M. and Pardalos, P. M. (1990), Algorithms for the Uncapacitated Single-Source
Minimum Concave-Cost Network Flow Problem. Working Paper, Department of Computer
Science, Pennsylvania State University.

10. Guisewite, G. M. and Pardalos, P. M. (1990), Minimum Concave-Cost Network Flow Problems:
Applications, Complexity, and Algorithms, Annals of Operations Research 25, 75-100.

11. Guisewite, G. M. and Pardalos, P. M. (1990). Performance of Local Search in Minimum
Concave-Cost Network Flow Problems, Working Paper, Department of Computer Science,
Pennsylvania State University.

12. Lamar, B. (1989), An Improved Branch and Bound Algorithm for Minimum Concave Cost
Network Flow Problems, Working Paper, Graduate School of Management and Institute of
Transportation Studies, University of California. Irvine.

13. Lozovanu. D. D. (1983). Properties of Optimal Solutions of a Grid Transport Problem with
Concave Function of the Flows on the Arcs, Engineering Cybernetics 20. 34-38.

14. Minoux, M. (1976), Multiflots de tout minimal avec fonctions de coin concaves, Annals of
Telecommunication 31 (3-4). 77-92.

15. Murty, K. G. (1968). Solving the Fixed Charge Problem by Ranking the Extreme Points,
Operations Research 16 (2), 268-279.

16. Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall Inc., Englewood Cliffs, NJ.

17. Pardalos, P. M. (1988), Enumerative Techniques for Solving Some Nonconvex Global Optimiza-
tion Problems, OR Spektrum 10, 29-35.

18. Pardalos, P. M. (1989), Parallel Search Algorithms in Global Optimization, Apphed Mathemattcs
and Computation 29, 219-229.

19. Plasil, J. and Chlebnican. P. (1990), A New Algorithm for the Min Concave Cost Flow Problem,
Working paper, Technical University of Transport and Communications. Czechoslovakia.

20. Rech P. and Barton L. G. (1970), A Non-Convex Transportation Algorithm. in E. M. L. Beale
(ed.). Applications of Mathematical Programming Techniques, TIIe English Universities Press
LTD. London, 250-260.

21. Soland, R. M. (1974), Optimal Facility Location with Concave Costs, Operations Research 22 (2).
373-382.

22. Yaged, Jr., B. (1971), Minimum Cost Routing for Static Network Models, Nefworks 1, 1399172.
23. Zangwill. W. I. (1968), Minimum Concave-Cost Flows in Certain Networks, Management Science

14 (7) 1 429-450.

